EuroHPC


הנק נוסבכר

#EuroHPC Joint Undertaking

The European High Performance Computing Joint Undertaking (EuroHPC JU) will pool European resources to develop top-of-the range exascale supercomputers for processing big data, based on competitive European technology.

Member countries are Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Latvia, Lithuania, Luxembourg, Malta, Montenegro, the Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden and Turkey.

3 out of top 10 supercomputers in the world

	Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
	5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107
	6	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, EVIDEN EuroHPC/CINECA Italy	1,824,768	238.70	304.47	7,404
	7	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
	8	MareNostrum 5 ACC - BullSequana XH3000, Xeon Platinum 8460Y+ 40C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR200, EVIDEN EuroHPC/BSC Spain	680,960	138.20	265.57	2,560

https://eurohpc-ju.europa.eu/supercomputers/our-supercomputers_en

1st Israeli awardee

- Dr Ronnie Kamai, BGU
 - Won 325,000 hours on Discoverer
 - Broadband earthquake simulations accounting for source, path and site effects in a 3D velocity model of the Dead-Sea Transform.

LUMI

LEONARDO

MARENOSTRUM 5

MELUXINA

KAROLINA

DISCOVERER

VEGA

DEUCALION

JUPITER

4.52 petaflops

Sustained performance

5.94 petaflops

Peak performance

Compute partitions:

One partition providing 1128 nodes, 4,44 petaflops

Central Processing Unit (CPU):

AMD EPYC 7H12 64core, 2.6GHz, 280W (Code name Rome)

Graphics Processing Unit (GPU):

No

Storage capacity:

2 petabytes

Applications:

Traditional Computational, HPC as a Service / Federated HPC Supercomputing services

Supercomputing services

TOP500 ranking:

#53 in EU; #166 globally (November 2023 <a>[7])

https://eurohpc-ju.europa.eu/access-our-supercomputers/eurohpc-access-calls_en

EuroHPC JU Call for Proposals for Benchmark Access 2024

Reference EUROHPC JU CALL FOR PROPOSALS FOR BENCHMARK

ACCESS MODE

Opening date 1 December 2023

Deadline model Multiple cut-off

Deadline dates 1 Jan 2024, 11:00 / 1 Feb 2024, 11:00 / 1 Mar 2024, 11:00 / 1 Apr

2024, 11:00 / 1 May 2024, 11:00 / 1 Jun 2024, 11:00 / 1 Jul 2024, 11:00 / 1 Aug 2024, 11:00 / 1 Sep 2024, 11:00 / 1 Oct 2024, 11:00

/ 1 Nov 2024, 11:00 / 1 Dec 2024, 11:00 (CET)

CALL STATUS: OPEN

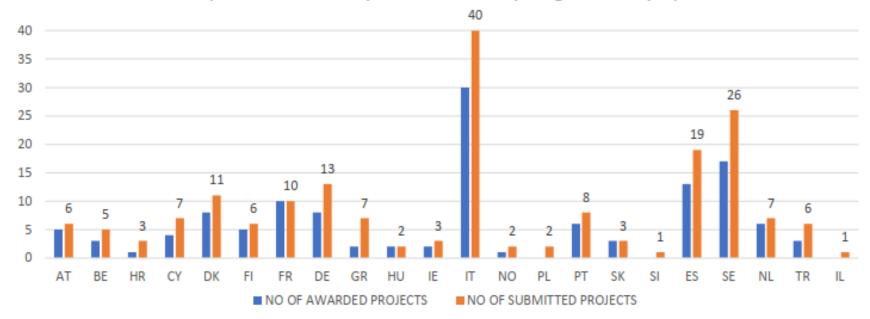
EuroHPC JU Call for Proposals for Development Access 2024

Reference EUROHPC JU CALL FOR PROPOSALS FOR DEVELOPMENT

ACCESS MODE

Opening date 1 December 2023

Deadline model Multiple cut-off


Deadline dates 1 Jan 2024, 11:00 / 1 Feb 2024, 11:00 / 1 Mar 2024, 11:00 / 1 Apr

2024, 11:00 / 1 May 2024, 11:00 / 1 Jun 2024, 11:00 / 1 Jul 2024, 11:00 / 1 Aug 2024, 11:00 / 1 Sep 2024, 11:00 / 1 Oct 2024, 11:00

/ 1 Nov 2024, 11:00 / 1 Dec 2024, 11:00 (CET)

Regular Access – country statistics

SYSTEM*	SITE (COUNTRY)	ARCHITECTURE	PARTITION	BENCHMARK**
LEONARDO	CINECA (IT)	Atos BullSequana XH2000	Leonardo Booster	3 500
LUMI	CSC (FI)	HPE Cray EX	LUMI-C	7 000 STORAGE - TIB HOURS 105 498
			LUMI-G	3 000
DISCOVERER Satio Potaccide Supercomputer	Sofia Tech Park (BG)	Atos BullSequana XH2000	Discoverer CPU	7 000
**		Atos BullSequana XH2000	MeluXina CPU	5 000
## MELUXINA	LuxProvide (LU)	XH2000	MeluXina GPU	1 000
HOSH PERIOD NUMCE COMMUTING IN LIPERMOOING		Atos BullSequana X430 A5	MeluXina FPGA	1 500
KARØ	IT4I VSB-TUO (CZ)	HPE Apollo 2000 Gen10 Plus	Karolina CPU	7 000
L 1 N A	1141 V38-100 (CZ)	x86_64	Karolina GPU	1 000
V F G A	1711M Marihor (SI)	Atos BullSeguana	Vega CPU	5 000
V E G A	E G A IZUM Maribor (SI)	BullSequana XH2000	Vega GPU	400

Systems available for benchmark access

SYSTEM*	SITE (COUNTRY)	ARCHITECTURE	PARTITION	DEVELOPMENT*
LEONARDO	CINECA (IT)	Atos BullSequana XH2000	Leonardo Booster	3 500
LUMI	CSC (FI)	HPE Cray EX	LUMI-C	15 000 STORAGE - TIB HOURS 105 498
		2.2, 2.	LUMI-G	10 000
DISCOVERER Solls Petascile Supercomputer	Sofia Tech Park (BG)	Atos BullSequana XH2000	Discoverer CPU	15 000
***		Atos BullSequana XH2000	MeluXina CPU MeluXina GPU	10 000 3 000
MELUXINA HIGH PEPIDAMANCE COMPUTING IN LIZEMBOURG		Atos BullSequana X430 A5	MeluXina FPGA	5 000
K A R Ø		HPE Apollo 2000	Karolina CPU	15 000
L 1 N A	IT4I VSB-TUO (CZ)	() Gen10 Plus x86_64	Karolina GPU	3 000
W E C A	IZUM Maribay (Cl)	Atos	Vega CPU	10 000
V E G A	IZUM Maribor (SI)	BullSequana XH2000	Vega GPU	1 000

Systems available for development access

How to apply?

- https://pracecalls.eu/
- Unique captcha system (slide bar)

Captcha Verification

Rotate and Straighten the Image

Project Application					
The Project					
Principal Investigator					
O Contact Person					
O Team Members Information					
O Partitions					
Code Details and Feasibility					
 Acceptance of Terms of Refer 	ence				

The Project

Konmorde*

Project details

Project title*	
Project summary (abstract)*	
Explain the scientific case of the project for which you intend code(s)*	d to use the

Deadline

01/01/2024 12:00:00

Delete Application

	Organization with research activity*
Project Application ^	○ Yes ○ No
The Project The Project	Occasionation hand office in leasted in France
Principal Investigator	Organization head office is located in Europe*
	○ Yes ○ No
O Contact Person	Percentage of R&D in Europe vs total R&D*
Team Members Information	
O Partitions	Organization department*
O Code Details and Feasibility	
O Acceptance of Terms of Reference	Organization group
	Organization address*

Project Application The Project Principal Investigator Contact Person Team Members Information Partitions Code Details and Feasibility

O Acceptance of Terms of Reference

Team Members Information

Please insert all the team members that will participate in the project

Team Members

Initials

Personal Information

Gender	
	~
Title	
	~
First (given) name*	
Last (family) name*	

■ Project Application

- The Project
- Principal Investigator
- Contact Person
- Team Members Information
- Partitions
- Ocode Details and Feasibility
- O Acceptance of Terms of Reference

Partitions

Partitions	
Partition name*	
	~
Code(s) used*	
This field is a multi-text field, for adding another code separate it with a comma	
Average number of processes/threads*	
Average job memory (total usage over all nodes in GB)*	
Maximum amount of memory per process/thread (MB)*	
Total amount of data to transfer to/from (GB)*	
Justification of data transfer*	
Describe the I/O strategy regarding the parameters indicated below.	
Is I/O expected to be a bottleneck?*	

Total amount of data to transfer to/from (GB)*					
Justification of data transfer*					
Describe the I/O strategy regarding the parameters indicated below.					
Is I/O expected to be a bottleneck?*					
I/O libraries, MPI I/O, netcdf, HDF5 or other approaches*					
Frequency and size of data output and input*					
Number of files and size of each file in a typical production run*					
Total storage required (GB)					

Code Details and Feasibility

This tab should overall include the following: description of main algorithms, how they have been implemented and parallelized, and their main performance bottlenecks and the solutions to the performance issues you have considered. For each code that needs to be optimized, please provide the details below. Codes can be added by clicking on the Add code button.

Development of the code(s) description*				
Code details				
Name and version of the code				
Webpage and other references				
Licensing model				
Contact information of the code developers				
Your connection to the code (e.g. developer, collaborator to main developers, etc.)				

Applications

↑ Application ID	↑ Call	↑ Status	↑ PI Name	↑ Affiliation	↑ Research Field Group	↑ Research Field Title	↑ Partition	↓ Submit Date
DRAFT-3743	EuroHPC Benchmark Acce	Draft	Donald Duck	Weizmann Institute	PE10 Earth System Scienc	PE10_12 Sedimentology, s	LUMI-C	
DRAFT-3758	EuroHPC Development Acce	Draft	Mickey Mouse	Technion	SH3 Environment, Space an	SH3_10 Urbanization, cities	Vega GPU	